
- 1 -

Altair 8800
Simulator

© 2017 David Hansel

https://www.hackster.io/david-hansel/arduino-altair-8800-simulator-3594a6

Acknowledgements .. - 2 -

Highlights ... - 2 -

Front Panel Elements ... - 3 -

Auxiliary Switch Functions ... - 4 -

Interacting with software via a terminal .. - 7 -

Printer Emulation ... - 8 -

Disk Drive Support ... - 9 -

Hard Disk Support .. - 10 -

Configuration Menu ... - 11 -

File System Manager .. - 16 -

Debugging Capabilities ... - 16 -

Example program: Kill-the-bit game .. - 17 -

Loading 4k BASIC the old-school way .. - 18 -

Altair Time Sharing BASIC .. - 19 -

Music System ... - 20 -

MITS Programming System II ... - 22 -

8080 Instruction Set ... - 26 -

Hardware setup for Arduino Mega 2560 ... - 29 -

Pin Mapping for Arduino Mega 2560 ... - 30 -

Hardware setup for Arduino Due ... - 32 -

Pin Mapping for Arduino Due .. - 33 -

Wiring an SD card to the Arduino Due ... - 35 -

- 2 -

Acknowledgements

I must give many credits to Mike Douglas of altairclone.com who has spent countless hours collecting

information about the Altair and made it all available on his web site for the community to use. Additionally,

most of the software included in this simulator was collected, put into working condition and in many cases

amended with additional functionality by Mike. Without his work, this project would have been significantly

more complicated to put together, way less fun and would probably not happened at all.

Another big thanks to Martin Eberhard who has written many tools for the Altair community, for example

the combo disk boot loader and hard disk loader which are used by the simulator. His ADEXER tool was

invaluable for debugging the hard disk support. Thanks also for helping me sort through various issues with

the hard disk emulation.

Highlights

• Power supply must be center-positive 7V-12V DC (typical usage 200-500mA, 1A max)

• Runs at about the same speed as the original

• Emulated memory size (RAM) is 64KB

• ALTAIR extended BASIC ROM (16k) can be mapped to addresses 0xC000-0xFFFF

• Emulates one ALTAIR 88-SIO, 88-ACR and 88-2SIO board. Each device can be mapped to the Arduino’s

serial interface (on the Due, they can be mapped to either Serial or Serial1). Data sent to each device can

be captured and replayed.

• The ACR device also supports using the CSAVE/CLOAD commands in extended BASIC. When invoking

CSAVE, the program will automatically be saved to a file specified by the file name in the CSAVE

command. For CLOAD, all programs saved with CSAVE will automatically be played back until the

program specified by the file name is found (or not).

• By default, both the 88-SIO and 88-2SIO boards are mapped to the Arduino’s main serial interface which

is configured to 115200 baud 8n1. That interface be accessed via pins 0/1 or the Arduino’s USB cable (on

the Due make sure to connect the USB cable to the programming USB port, not the native port).

• Processes input/output on serial devices to deal with 7/8 bit output, upper-case input and backspace.

• Emulates 4 (can be configured to up to 16) Altair 88-DCDD disk drives

• Emulates an 88-HDSK hard disks drive with one unit (can be configured up to 4) and 4 platters.

• Emulates the 88-RTC-VI board which makes it possible to run ALTAIR Time Sharing BASIC.

• Many settings can be modified via a configuration editor (invoke by holding STOP and raising AUX1)

• Above specs apply when running on an Arduino Due. The simulator can also work when running on an

Arduino Mega 2560. In that case, it runs at about 25% original speed and has 6k emulated RAM. Disk

drive emulation is not supported on the Mega.

- 3 -

Front Panel Elements

Lights:

 A15-A0 Shows the current address bus state (i.e. PC during normal operation)

 D7-D0 Shows the current data bus state

Switches:

 SW15-SW0 Address/Data entry switches

 RUN Execute instructions starting at current PC location

 STOP Stop program execution

 SINGLE STEP Execute single instruction at current PC location and increment PC

 EXAMINE Set PC to address from SW15-0 and show content of that address on D7-0

 EXAMINE NEXT Increment PC and show content of that address on D7-0

 DEPOSIT Store value of D7-0 at current PC address

 DEPOSIT NEXT Increase PC by one and store value of D7-0 at that address

 CLR Stop serial capture/replay activated by AUX2 (see below)

 Holding CLR down during power-up will initialize memory and CPU registers to 0

 RESET Reset processor (set PC to 0)

 PROTECT Mark current memory page as write-protected (cannot be written to)

 UNPROTECT Remove write-protect status of current page

 AUX1/AUX2 See detailed information below

- 4 -

Auxiliary Switch Functions

AUX1 down:

Function depends on current setting of SW7-0:

 0…0000: Print this list to serial interface

 0…0001: Calculator (David Hansel, 2015)

• Flipping SW15 (on->off or off->on) executes operation selected by SW14-13

between operand currently showing on A15-8 lights and operand selected

by SW12-8 switches. Result is shown on A15-8 lights.

• Operations (SW14-13): 00=Add, 01=Subtract, 10=Multiply, 11=Divide

 0…0010: Kill-the-bit (Dean McDaniel, 1975)

• Kill the rotating bit. If you miss the lit bit, another bit turns on leaving two bits to destroy.

• Quickly toggle the switch, don't leave the switch in the up position.

• Before starting, make sure all the switches are in the down position.

 0…0011: Pong game using front panel (Mike Douglas of altairclone.com)

• Left player quickly toggles SW15 to hit the "ball."

• Right player toggles SW8. Score is kept in memory locations 0x80 and 0x81 (left and right).

• Score is missed balls, so the lower number wins.

 0…0100: Pong game using serial terminal (David Hansel, 2015)

• Needs terminal connected to serial interface. Terminal must understand escape sequences for cursor

movement (“ESC-[“)

• Left player uses A/Z keys (paddle up/down), right player uses K/M keys (paddle up/down)

 0…0101: 4k Basic (Bill Gates, Paul Allen, Monte Davidoff 1975)

• SW11 down: I/O to SIO device, SW11 up: I/O to 2SIO device

(either setting will work in default simulator configuration)

• Answering N to questions about SIN/RND/SQR slightly increases available BASIC memory

 0…0110: MITS 16k ROM Basic

• On Arduinoe Due, maps ROM extended BASIC to addresses 0xC000-0xFFFF until next RESET.

(On Arduino Mega, ROM extended BASIC is always mapped to that range).

• Sets PC to 0xC000 and starts execution (i.e. starts BASIC)

• Before activating, set SW15-12 switches to

0000: I/O goes to 2SIO device

0010: I/O goes to SIO device

(wither setting will work in default simulator configuration)

• When asked MEMORY SIZE, just press enter.

• When asked LINEPRINTER, enter capital O and press enter

• Available memory for BASIC programs is 48101 bytes (~3000 bytes on Arduino Mega)

• CSAVE and CLOAD commands can be used to save/load programs to/from internal storage

 0…0111: MITS Programming System II (Due only)

• SW11 down: I/O to SIO device, SW11 up: I/O to 2SIO device

(either setting will work in default simulator configuration)

• Editor, Assembler and Debugger

• See intro at the end of this document, google for full documentation

 0…1000: Disk Drive Boot ROM (Due only)

• See Disk Drive Support section below

 0…1001: ALTAIR Turnkey Monitor (Due only)

• Uses 2SIO device for I/O

- 5 -

 0…1010: Music (“Daisy, Daisy…”, Due only) (Steve Dompier, 1975)

• In configuration menu, set throttle delay to 5 before running (automatic throttle

introduces noise due to the throttle-adjustment code that runs 40 times per second)

• An AM radio held on top of Simulator, close to D0-D7 lights will pick up the song

• See: http://www.digibarn.com/collections/weirdstuff/altair-sheetmusic/

 0…1011: 8080 CPU Diagnostic (Microcosm Associates, 1980)

• Basic test, takes about a second to finish

• Outputs to serial interface (“CPU IS OPERATIONAL”)

 0…1100: 8080 CPU Exerciser (Frank D. Cringle 1994, Ian Bartholomew 2009)

• Very thorough test that generates a CRC code for each group of tests.

• Outputs to serial interface.

• Full test takes about 4 hours. The "aluop <b,c,d,e,h,l,m,a>" section takes especially long

 0…1101: Music System (Processor Technology, 1977)

• Processor Technology’s Music System for the Altair

• Loads the music system (at 0x0) and ACUTER monitor (at 0xF000) into Altair RAM and starts ACUTER monitor.

• See “Music System” section below for more info

 0100000: Read Intel HEX data from serial input

 11xxxxxx: Save the 256-byte memory page currently selected on the SW15-8 switches to file #xxxxxx

 10xxxxxx: Load the 256-byte memory page currently selected on the SW15-8 switches from file #xxxxxx

AUX1 up:

If STOP is held up while AUX1 is raised, then invoke the configuration editor (see Configuration menu below).

Otherwise, run the program configured via the corresponding setting in the configuration menu.

AUX2 down:

If SW12 is up and SW13 is down, then mount disk in emulated disk drive (see Disk Drive Support section below).

If SW12 is up and SW13 is up, then mount image in emulated hard disk (see Hard Disk Support section below).

Otherwise, play back captured data or example programs. SW15-13 select the device

to which data is played back and SW8-0 select what data is being played back:

• SW15 down: Use the serial device which is mapped to the host serial output (primary) and

has last seen input/output activity. In most cases this will automatically select the intended device.

• SW15 up: Use serial device selected on SW14-13:

00: 88-SIO (port 0x00/0x01)

01: 88-ACR (port 0x06/0x07) (audio cassette interface)

10: 88-2SIO, serial 1 (port 0x10/0x11)

11: 88-2SIO, serial 2 (port 0x12/0x13)

• SW8 down: Play back basic/assembly example # selected on switches SW7-0 (see below)

• SW8 up: Play back captured data in file # selected on switches SW7-0 (see below)

Loading BASIC/assemly examples:

• SW7 up: BASIC example, SW7 down assembly example

• If SW6-0 are all 0 then a list of available examples will be transmitted

• Set SW6-0 to the example number in the list and push AUX2 DOWN to transmit example

• Playback can be stopped by pushing CLR or by pushing AUX2 DOWN again

Playing back captured data:

• Play back data previously captured via AUX2 up

• The file number to be played back must be selected via SW7-0

• Playback can be stopped by pushing CLR or by pushing AUX2 DOWN again

- 6 -

AUX2 up:

If SW12 is up and SW13 is down, then unmount disk from disk drive (see Disk Drive Support section below).

If SW12 is up and SW13 is up, then unmount image from hard disk (see Hard Disk Support section below).

Otherwise, capture data. SW15-13 select the device from which data is captured (same as SW15-13 settings in

AUX2 down section above). SW7-0 specify the file number under which the captured data will be saved.

Capturing continues until AUX2 is again pressed UP.

Capturing serial data can be used to save a BASIC program in BASIC (note that in extended BASIC the

CSAVE/CLOAD commands provide an easier way of doing this):

1. Set SW7-0 to the desired storage file number

2. Set SW15-13 to 000 (to automatically select capture device)

3. type "list" (but not ENTER)

4. activate AUX2 up to start capture

5. press ENTER

6. wait until listing is finished

7. activate AUX2 up again to finish capture

To later restore a program:

1. Set SW7-0 to a storage file number under which serial data has been captured before

2. Set SW15-13 to 000 (to automatically select replay device)

3. type "new" to clear the current program

4. activate "AUX2 down" to start replaying the captured data

5. Ignore the "SYNTAX ERROR" at the end

(reported because the final "ok" of the "list" function was also captured)

Capturing cassette data can be used to save BASIC variable contents in Extended BASIC or saving

programs from MITS Programming System II

1. Set SW7-0 to the desired storage file number

2. Set SW15-13 to 101 (to capture from ACR device on I/O address 6/7)

3. activate AUX2 up to start capture

4. enter CSAVE*v [where v is the variable name that is supposed to be saved]

5. Repeat the previous step if more variables need to be saved

6. wait until listing is finished

7. activate AUX2 up again to finish capture

To later load the data:

1. Set SW7-0 to a storage file number under which cassette data has been captured before

2. Set SW15-13 to 101 (to replay to ACR device on I/O address 6/7)

3. Set SW8 to 1 (to select file replay, not BASIC example)

4. activate AUX2 down to start replaying the captured cassette data

5. enter CLOAD*v [where v is the variable name that is to be loaded]

6. Repeat the previous step if more variables need to be loaded

7. Activate AUX2 down to stop replay

- 7 -

Interacting with software via a terminal

The main way to interact with programs on the Altair is via a terminal that is connected to a serial interface. The

two most common serial interface cards used with the Altair were the 88-SIO and 88-2SIO. The 88-SIO offered

one serial port which (although configurable via jumpers) was most often set to use I/O addresses 0 and 1. The

88-2SIO offered two serial ports (again configurable via jumper) that usually used addresses 16/17 (first port)

and 18/19 (second port).

Most systems had at least one of these installed and most programs would expect to interact via either an 88-

SIO at addresses 0/1 or the first port of an 88-2SIO at addresses 16/17. Some programs used the SW15-8 sense

switches at startup to determine which one to use. For example:

4k BASIC and Programming System II: If SW11 is up then use an 88-2SIO at 16/17 otherwise use 88-SIO at 0/1.

16k ROM BASIC: If SW13 is up then use 88-SIO at 0/1 otherwise use 88-2SIO at 16/17.

The simulator simulates a system with both an 88-SIO and 88-2SIO installed at their default addresses. In the

default configuration, both the 88-SIO and the first port of the 88-2SIO are mapped to the Arduino’s main serial

port, i.e. any output that goes to either one will show up on a terminal connected to the Arduino and inputs

coming from the terminal will be sent to both cards. This was not possible in reality (it would mean to hook up

one terminal to two serial ports) but in the simulated environment it works just fine. It allows users to not have

to worry about properly setting sense switches before starting BASIC or other programs.

The one drawback is that when changing device settings in the configuration menu, you must first know which

device is being used. The easiest way to determine that is to just un-map one of them in the configuration and

see if the serial I/O still works.

7-bit vs 8-bit characters. Early terminals used only 7-bit characters and a number of Altair programs (such as 4k

BASIC) use the 8th bit of a character to define end-of-string which would work fine since the terminal would

ignore the 8th bit anyways. Modern terminals use the 8th bit and so display some strange graphics character for

characters where the 8th bit is set. The simulator (in the serial device settings) offers a way to filter out the 8th bit

by enabling the “Use 7 bits” setting.

Uppercase input. Early terminals only had upper case characters and so early Altair programs (4k BASIC again)

can not handle lower-case characters. The simulator offers a serial device setting (“Serial input uppercase”) that

will automatically covert incoming lower-case characters to upper case.

Backspace handling. Some early Altair software does not use the backspace (0x08) character and instead has its

own way of undoing inputs, e.g. in 4k BASIC receiving an underscore (“_”) will print the underscore but internally

delete the last character from the input buffer, i.e. have the functionality of a backspace. Other programs expect

a “rubout” (0x7f) character instead of “backspace” (0x08). The simulator offers some help by offering an option

to translate between backspace and underscore or backspace and rubout.

However, the simulator has no knowledge about which terminal program is being used and currently assumes

that sending a rubout (0x7f) to the terminal will delete the last character before the cursor and move the cursor

back. Putty does this but it seems like TeraTerm does not (unless it’s an option that I am not aware of).

So while enabling the “Translate backspace to underscore” option works well in BASIC when using Putty (it

makes the backspace key work as you would expect on a modern computer), in TeraTerm pressing backspace

will just internally delete the last character (because the simulator translates backspace to underscore) but not

delete it on screen (because the simulator translates the underscore back to rubout which TeraTerm does not

handle).

- 8 -

Later programs (such as Altair Disk BASIC) have proper backspace handing built in and therefore work fine with

both Putty and TeraTerm.

Pasting text into the terminal. When pasting large amounts of text into the terminal, the terminal program

usually sends that text at the given baud rate. So if the connection is using 9600 baud then a new character will

arrive at the simulator about every millisecond. With many simulated programs (and especially when running

the simulator on the Arduino Mega) this can cause characters to get lost because the simulated program can not

keep up processing the characters at the rate that they arrive.

There are two ways to deal with this:

1. Lower the baud rate of the host serial interface and your terminal program, which forces the terminal to

send characters at a lower speed. This works to some degree but (a) you may not be able to reduce the

baud rate enough to guarantee that no characters are lost (especially when using the Mega) and (b)

reducing the baud rate will also lower the transmission speed from the simulator to your terminal,

which can become annoying when outputting large amounts of text.

2. The better option is to tell your terminal to add a delay between sending characters. TeraTerm allows

this by changing the “Transmit delay” settings (In the Setup->Serial port menu). The terminal will still

send at the given (fast) baud rate (and more importantly receive at the fast baud rate) but will wait for a

specified amount of time before sending the next character. Moreover, TeraTerm allows to specify a

delay after a carriage return/line feed. This is important because some programs (such as BASIC) need

additional time after seeing a carriage return to process the input.

Some testing has shown that for the Arduino Mega, setting the Transmit delay to 10msec/char and

200msec/line works well even with the host serial rate set at 115200 baud. On the Due, 3msec/char and

25msec/line should be sufficient. These are just some basic benchmarks. The optimum setting (not too

much delay but also not too little) will also depend on the baud rate.

Unfortunately it appears that Putty does not support a transmit delay.

Printer Emulation

One printer can be emulated by enabling the corresponding options in the configuration menu (see Configuratoin

Menu section below). The printer emulation can be configured for an “Okidata” printer or “Centronics C700”.

Most of the included software (e.g. BASIC) support both (enter “O” or “C” at the LINEPRINTER prompt). Support

for the Centronics printer is more complete since documentation for that printer exists on the Internet. The

Okidata printer emulation was mostly put together by looking at other Altair system emulators.

Printer emulation does support interrupts. If interrupts are enabled by the software then the printer emulation

automatically switches to real-time mode, i.e. it roughly simulates the time it would take the printer to print. This

is necessary because otherwise (in an interrupt driven software system such as Time-Sharing BASIC) the printer

would rapidly produce interrupts, disrupting access to other devices. Real-time operation can be forced even if

interrupts are not enabled by enabling the “Force real-time mode” option in the configuration menu.

The printer output can be directed to either the host’s primary or secondary serial port.

- 9 -

Disk Drive Support

Disk drive support is optional and requires a SD card attached to the Arduino Due’s SPI header (the 2-row, 6-pin

header marked “SPI”). See the Wiring SD card to Arduino DUE section at the end of this document about how to

physically hook up the card.

Disk drive support is not available in the Arduino Mega build, mainly for two reasons: 1. The SPI pins on the

Mega are directly connected to some general I/O pins which are already used for the front panel and 2. The

Mega only provides 6k of emulated RAM. Most disk based programs require more than that.

The following files are expected to be found in the root directory of the (FAT format) card (the disks

subdirectory in the source archive contains several disks including CP/M and Altair DOS):

• DISKxx.DSK (where xx is a 2-digit hexadecimal number): Disk images that the simulator can mount.

• DISKDIR.TXT: A text file whose contents will be sent to the serial connection (i.e. shown to the user) if

front panel switches are set to 0001xxxx00000000 and the AUX2 switch is pressed down. This should

contain information about each of the DISKxx.DSK files

To mount disks in the drive, use the AUX2 down switch:

• Set SW15-0 to: 0001nnnnDDDDDDDD where nnnn is a 4-bit number selecting the drive (i.e. drive 0-15)

and DDDDDDDD is an 8-bit number selecting the disk number and press AUX2 down.

• The 8-bit disk number corresponds to the xx in the DISKxx.DSK files on the SD card.

• For example, setting SW15-0 to 0001 0010 0000101 and pressing AUX2 down will mount disk number 5

in drive 2.

• Selecting disk number 0 is a special case. If disk 0 is selected for mounting, it will not be mounted but

instead the contents of the DISKDIR.TXT file will be sent to the serial output (i.e. shown to the user).

Note that that means a file named DISK00.DSK can not be mounted.

• If a disk is already mounted in the drive the mounted disk will be unmounted before mounting the new

disk

• If the disk file does not exist, it is like inserting an empty disk in the drive. If the operating system writes

to the disk, the selected disk file will be created. So inserting a non-existent disk and then formatting

that disk via the operating system (e.g. CP/M) will create a new empty disk.

• It is possible to mount the same disk in multiple drives. The simulator has no problem with that but the

running operating system may get confused.

To unmount a disk from a drive, use the AUX2 up switch:

• Set SW15-0 to: 0001nnnnxxxxxxxx where nnnn is a 4-bit number selecting the drive (i.e. drive 0-15) and

press AUX2 up.

• It is not necessary to unmount disks before turning off the computer. Each write operation to a disk gets

flushed to the SD card immediately so turning the computer off with disks mounted will not lose data.

To run a bootable disk image, first mount the disk and then start the Disk Boot ROM:

• Set SW0-7 to 00001000 (to select Disk Boot ROM)

• Press AUX1 down

• This will install the Disk Boot ROM at 0xFF00 and immediately start it. If a bootable disk has been

mounted it should automatically start now

- 10 -

Hard Disk Support

Just like disk drive support, hard disk (88-HDSK) support requires a SD card and is not available on the Arduino

Mega build. See the first two paragraphs of the “Disk Drive Support” section above for more details.

The 88-HDSK controller could handle up to 4 units, each holding up to 4 platters. In its default configuration,

only one unit is enabled, which should be sufficient for most cases. Change the NUM_HDSK_UNITS setting in the

config.h file to enable more (at most 4) units.

The following files are expected to be found in the root directory of the (FAT format) card (the disks

subdirectory in the source archive contains some hard disk images including the Altair Accounting System):

• HDSKxx.DSK (where xx is a 2-digit hexadecimal number): Disk images that the simulator can mount.

• HDSKDIR.TXT: A text file whose contents will be sent to the serial connection (i.e. shown to the user) if

front panel switches are set to 0011xxxx00000000 and the AUX2 switch is pressed down. This should

contain information about each of the HDSKxx.DSK files

To mount hard disk images on a unit/platter, use the AUX2 down switch:

• Set SW15-0 to: 0011uuppDDDDDDDD where uu is the hard disk unit (2-bit, 0-3) and pp is the platter

number within that unit (2-bit, 0-3). DDDDDDDD is an 8-bit number selecting the hard disk image

number. Then press AUX2 down.

• The 8-bit disk image number corresponds to the xx in the HDSKxx.DSK files on the SD card.

• For example, setting SW15-0 to 0011 0001 0001100 and pressing AUX2 down will mount HDSK0C.DSK

on platter 1 of unit 0.

• Selecting hard disk image number 0 is a special case. If disk image 0 is selected for mounting, it will not

be mounted but instead the contents of the HDSKDIR.TXT file will be sent to the serial output (i.e. shown

to the user).

Note that that means a file named HDSK00.DSK can not be mounted.

• If a hard disk image is already mounted in the drive the mounted disk will be unmounted before

mounting the new disk

• If the hard disk image file does not exist, it is like inserting a new platter in the hard disk. If the operating

system writes to the hard disk, the selected image file will be created. Inserting a non-existent image

and then formatting via the operating system (e.g. using ADEXER in CP/M) will create a new empty

image.

• It is possible to mount the same image in multiple drives. The simulator has no problem with that but

the running operating system may get confused.

To unmount an image from a unit/platter, use the AUX2 up switch:

• Set SW15-0 to: 0011uuppxxxxxxxx where uu is the hard disk unit (2-bit, 0-3) and pp is the platter number

within that unit (2-bit, 0-3). Then press AUX2 up.

• It is not necessary to unmount images before turning off the computer. Each write operation to an

image gets flushed to the SD card immediately so turning the computer off with disks mounted will not

lose data.

To run a bootable hard disk image, first mount the image and then start the Disk Boot ROM:

• Set SW0-7 to 00001110 (to select Disk Boot ROM)

• Press AUX1 down

• This will install the Hard Disk Boot ROM at 0xFC00 and immediately start it. If a bootable image has been

mounted it should automatically start now. The Hard Disk Boot ROM always boots from unit 0, platter 0.

- 11 -

Configuration Menu

The simulator configuration menu can be entered by holding STOP up and raising AUX1.

The following settings/actions are available:

• Enable profiling

If enabled and the simulator is running (i.e. not in STOP mode) a message showing the current

performance of the simulator is written to the (primary) serial output.

• Set throttle delay (Arduino Due only)

Allows to throttle simulator performance. Throttling is done by busy-waiting, i.e. an empty loop

counting down from the value selected here to zero. If set to “auto adjust”, the simulator evaluates

performance about 40x a second and automatically adjusts the throttle delay to get as close to 100% of

the original (i.e. 2MHz clock frequency) as possible. If profiling is enabled too then the effect of changes

in the throttle delay can easily be observed.

• Enable serial panel

Shows a simple representation of the front panel lights and switches on the (primary) serial output.

Mostly useful when STANDALONE mode is enabled.

• Enable serial input

When stopped, the simulator processes the inputs described in the “Debugging capabilities” section

below.

• Enable serial debug

Print processor status and disassembled opcode during single stepping

• Clear memory on powerup

If enabled, the simulated memory will be cleared (set to 0) when the simulator starts up.

Otherwise, memory content is random (as with the original).

• Aux1 shortcut program

Sets the program to be run when the AUX1 switch is raised. This can be any if the built-in programs

available via AUX1 down or a disk. If a disk is selected, pushing up AUX1 will mount the disk and then

install and run the disk boot loader.

• Host Serial baud rate

Sets the baud rate for the Serial interface (pins 0/1 and USB serial on the Arduino)

• Host Serial1 baud rate (Arduino Due only)

Sets the baud rate for the Serial1 interface (pins 18/19) on the Arduino

• Primary host serial (Arduino Due only)

Selects which serial interface (Serial/Serial1) is used as the primary interface. All simulator

related output (such as the configuration menu) is sent to the primary serial interface. Also,

when auto-detecting the serial device for capturing/replaying data, only devices mapped to the

primary serial interface are considered.

• Configure SIO/ACR/2SIO port 1/2SIO port 2

See “Serial device configuration” section below

• Configure Disk Drives (Only if disk drive emulation is enabled)

See “Disk Drive configuration” section below.

• Configure Hard Disks (Only if hard disk emulation is enabled)

See “Hard Disk configuration” section below.

• Configure Interrupts

See “Interrupts configuration” section below.

- 12 -

• Manage Filesystem

Starts file system manager (see File System Manager section below).

• Apply host serial settings

When making changes to the host serial settings (baud rate, primary interface), those are not applied

immediately. Select this option to apply the modified settings.

• Clear memory

Clear the memory of the simulator (set all to 0)

• Save configuration

Saves the configuration. Up to 256 different configurations can be saved.

Configuration #0 is automatically loaded when the simulator starts.

• Load configuration

Loads a saved configuration

• Reset to defaults

Resets all settings to their default values. This can also be done by holding RESET up during power-up of

the Simulator.

Interrupt configuration

The simulator can emulate a 88-RTC-VI board which provides a real-time clock and vector interrupt capability

(both are necessary to run Altair Timesharing Basic). The following settings can be configured:

• Real Time Clock

Can be either disabled or set to produce an interrupt at one of the following frequencies:

0.06, 0.6, 6, 10, 60, 100, 1000 or 10000Hz

Note that (despite the name) the frequency is based on simulated time, not real time.

• Vector Interrupt Board

If set to “Interrupts connected directly to CPU” then the Vector Interrupt functionality is disabled.

In that case, the device interrupt settings below can only be changed between “connected” or “not

connected”. Note that the simulator (unlike the original) allows to connect multiple devices to the CPU’s

interrupt line

If this is set to “Use Vector Interrupt Board” then each device interrupt can be assigned a level/priority

according to the 88-RTC-VI board’s functionality. Consult the 88-RTC-VI board’s user manual for more

information about the interrupt levels.

• [Device] interrupt

This configures the connection of the interrupt line for each of the listed devices. If the VI board is

disabled, then an interrupt line can either be connected or not connected to the CPU. If the VI board is

enabled, then the interrupt can be connected to a specific level on the VI board.

- 13 -

Disk drive configuration

If disk drive support is enabled, this menu allows to modify drive related settings:

• Force real-time mode

If a running program that interacts with the disk drive does not enable interrupts for the drive then the

drive emulation works in a rapid mode in which new data is presented to the program every time it

checks if new data is available. This makes for very fast disk emulation. If interrupts are enabled for the

drive then it operates in real-time mode, only producing interrupts when new data would be available

on a real drive.

Enabling the “Force real-time mode” option will always operate the drive in the slower real-time mode,

making for a more realistic LED blinking pattern while interacting with the disk drive.

• Drive n mounted disk image

Shows which disk image (DISKxx.DSK) is currently mounted in which drive and cycles through the

available images.

Hard disk configuration

If hard disk support is enabled, this menu allows to modify drive related settings:

• Force real-time mode

If a running program that interacts with the hard disk does not enable interrupts for the drive then the

drive emulation works in a rapid mode in which new data is presented to the program every time it

checks if new data is available. This makes for very fast hard disk emulation. If interrupts are enabled for

the hard disk then it operates in real-time mode, only producing interrupts when new data would be

available on a real drive.

Enabling the “Force real-time mode” option will always operate the drive in the slower real-time mode,

making for a more realistic LED blinking pattern while interacting with the hard disk.

• Hard disk [unit n] platter m image

Shows which image (HDSKxx.DSK) is currently mounted in which unit/platter and cycles through the

available images. The [unit n] is only shown if the simulator is set up to emulate more than one unit

(NUM_HDSK_UNITS setting in config.h).

• Reset hard disk controller

Resets the controller. Mainly this sets the CRDY flag. Do this if emulated software instructs you to turn

the hard disk unit off and back on.

Printer configuration

To configure printer options, select “(5) Configure printer” in the main configuration menu. The following

configuration options are available for printer emulation:

• Printer type

Select which printer should be emulated or turn off printer emulation:

Okidata – emulates an Okidata printer at I/O ports 2/3

C700 – emulates a Centronics C700 printer at I/O ports 2/3

• Map printer to interface

Selects the host’s serial interface to which the emulated printer’s output should be directed

• Force real-time mode

If enabled, the printer emulation will enforce timing similar to a real printer (although not necessarily

matching the actual emulated printer model). Provides a printer-like effect when watching the output.

- 14 -

Serial device configuration

The simulator emulates four serial devices connected to the Altair:

• 88-SIO card at port 0x00/0x01

• 88-ACR audio cassette interface at port 0x06/0x07

• 88-2SIO, card with serial 1 at port 0x10/0x11 and serial 2 at port 0x12/0x13

For each of these devices the following settings can be configured in the configuration menu:

• Map to host interface

Select to which host interface input/output of device gets directed.

When using Arduino Mega, there is only one host interface (Serial). When using the Due, there is the

primary and secondary interface. The physical interface (Serial/Serial1) that the primary interface maps

to can be picked on the main setup screen. The other one becomes the secondary interface.

• Simulated baud rate

If receive interrupts are disabled for a serial device and “Force baud rate” is off, the simulator just makes

a new byte available for playback whenever the running program requests one. That way, playback runs

as maximum speed without the program missing any characters. If receive interrupts are enabled

however, the characters must be sent at a rate that gives the running program a chance to keep up.

Similarly, if transmit interrupts are enabled, the program expects some time to pass between sending

characters.

This setting selects the baud rate at which input/output is processed. Note that the timing is based on

simulated time, not real time. That means that on the Mega (since it is running at 25% original speed) a

rate of 110 baud may actually look more like 25 baud in real time.

• Force baud rate

If this option is on then the simulator will always use the given baud rate for receive and transmit, even

if interrupts are disabled. This can be used to get more realistic timing for code that is not using

interrupts.

• Example playback NULs

When playing back data to the running program (e.g. the AM2 assembler), the program may need some

extra processing time after a carriage return to process the previous line. This is done (as it would have

been on the original) by sending a number of NUL (0) bytes after a carriage return. Note that this setting

only affects the case when playing back examples stored in the simulator, not for captured data being

played back. For captured data, make sure to set the program from which you are capturing to produce

the proper number of NULs.

• Use 7 bits

Some Altair programs (e.g. 4k BASIC) use the 8th bit of a character to signal end-of-string, assuming that

the output device only uses 7 bits. If this is the case, then the last character of any string will appear

mangled in the output. If this option is enabled, the simulator will always clear the 8th bit before sending

it to the serial output.

If the option is set to “autodetect”, the s will detect (for some known programs) based on the memory

location of the “OUT” instruction whether the bit needs to be cleared or not.

• Serial input uppercase

Some Altair programs (e.g. 4k BASIC) only display uppercase characters and expect all input to be

uppercase characters. If this option is enabled, the simulator will translate any incoming lower-case

character to upper-case.

If the option is set to “autodetect”, the simulator will detect (for some known programs) based on the

memory location of the “IN” instruction whether the translation is required.

- 15 -

• Translate backspace to

Allows to map the backspace character to other characters expected by different ALTAIR programs:

off – backspace is sent as backspace (ASCII 8)

underscore – backspace is sent to the simulated program as an underscore ‘_’ (ASCII 95) and an

underscore sent by the simulated program is interpreted as backspace. This is usefule for 4k BASIC and

ROM BASIC.

rubout – backspace sent to the simulated program as a rubout (ASCII 127) character. Time-sharing BASIC

expects this

autodetect – the simulator attempts to automatically determine which conversion is necessary by the

memory location of IN/OUT opcode.

• Enable CLOAD/CSAVE traps (for ACR device only)

If this option is enabled then the simulator will catch BASIC CLOAD/CSAVE calls and automatically

save/load to the internal simulator storage, avoiding the need to manually start cassette capture/replay.

- 16 -

File System Manager

The emulator includes a very simple mini file system to store the different types of data that can be

saved/captured. The file system manager can be invoked by selecting (M) in the configuration menu.

The file system manager supports the following commands:

• F: Format file system (erases all files)

• d: Delete a file from the file system

• r: Read a file and show contents on screen

Debugging Capabilities

When simulation is stopped (i.e. the WAIT LED is on) and the “Serial debug” option is enabled in the

configuration menu, the following keys have a function:

0-9,a-f Toggle SW0-15 (only if stand-alone mode enabled in setup.h)

/ Prompt for value to set SW0-15 (only if stand-alone mode enabled in setup.h)

r Run

o Stop

t Step

R Reset

! Hard reset (STOP+RESET)

X/x Examine/examine next

P/p Deposit/deposit next

U AUX1 up

u AUX1 down

s AUX2 up

l AUX2 down

Q Protect

q Unprotect

> Run from address

B Add breakpoint (only if breakpoints enabled in setup.h)

V Delete last breakpoint

D Disassemble (will prompt for start address, space bar continues, any other key exits)

M Dump memory (will prompt for start address, space bar continues, any other key exits)

n change number system (hexadecimal/octal/decimal)

C Enter configuration menu

L Load a program or data through serial input into simulated memory

 First value is start address, second value is length, followed by data bytes

 (all values separated by spaces). Easier to enter data this way than using the switches.

H Load a program in Intel HEX format through serial input.

 https://en.wikipedia.org/wiki/Intel_HEX

 Useful to deposit programs and/or data directly into the simulated memory.

- 17 -

Example program: Kill-the-bit game

To enter the kill-the-bit game below into the ALTAIR:

1. Activate RESET

2. Set SW7-0 to first byte of program (041 octal, 00 100 001 binary)

3. Activate DEPOSIT

4. Set SW7-0 to next byte of program

5. Activate DEPOSIT NEXT

6. Repeat steps 4-5 until all bytes have been entered

7. If running the simulator on an Arduino MEGA, the game runs slow.

To compensate, change the content of memory location 006 from 016 to 056 (all octal).

To run the game:

1. Activate RESET

2. Set SW15-8 switches to 0

3. Activate RUN

To save the game to Arduino storage:

1. Set SW15-8 to 0 (selects memory page 0)

2. Set SW7 to 1 (selects memory page operation)

3. Set SW6 to 1 (selects memory page save)

4. Set SW5-0 to 0 (selects file number 0)

5. Activate AUX1 down

To load the game from Arduino storage:

1. Set SW15-0 as above, except SW6 to 0 (selects memory page load)

2. Activate AUX1 down

 ; Kill the Bit game by Dean McDaniel, May 15, 197 5
 ;
 ; Object: Kill the rotating bit. If you miss the lit bit, another
 ; bit turns on leaving two bits to destro y. Quickly
 ; toggle the switch, don't leave the swit ch in the up
 ; position. Before starting, make sure al l the switches
 ; are in the down position.
 ;
0000 org 0
0000 210000 lxi h,0 ; initialize counter
0003 1680 mvi d,080h ; set up initial display bi t
0005 010E00 lxi b,0eh ; higher value = faster
0008 1A beg: ldax d ; display bit pattern on
0009 1A ldax d ; ...upper 8 address lights
000A 1A ldax d
000B 1A ldax d
000C 09 dad b ; increment display counter
000D D20800 jnc beg
0010 DBFF in 0ffh ; input data from sense switch es
0012 AA xra d ; exclusive or with A
0013 0F rrc ; rotate display right one bit
0014 57 mov d,a ; move data to display reg
0015 C30800 jmp beg ; repeat sequence
0018 end

Here is the program in octal for easier entry into the Altair:
000: 041 000 000 026 200 001 016 000
010: 032 032 032 032 011 322 010 000
020: 333 377 252 017 127 303 010 000

- 18 -

Loading 4k BASIC the old-school way

The simulator provides a quick and easy way to load 4k BASIC by setting SW0-7 to 00000101 and pressing AUX1

down (see “Aux1 down” section above).

However, it is also possible to load 4k BASIC the original (slow) way via a boot loader.

Here’s how to load BASIC as if it came from a paper tape reader:

• Start the configuration editor and select (1) to configure the SIO device

• Make sure the device is mapped to the host serial port to which your terminal is connected

• Set the “Use 7 bits”, “Serial input uppercase” and “Translate Backspace to” settings to “autodetect”

• Set the simulated baud rate to 110 baud. Obvioulsy you can choose other baud rates here but 110

baud is the speed at which a typical TeleType tape reader operated. Note: the baud rate is based on

simulated time (not real time), so when running on the Arduino Mega, 110 baud will be closer to 25

baud. All time estimates given below will be about 4x longer. I suggest using 600 baud in that case.

• Enable the “Force baud rate” option

• Exit the configuration editor

• Key in the SIO bootloader (same procedure as entering kill-the-bit above):
000: 041 256 017 061 022 000 333 000
010: 017 330 333 001 275 310 055 167
020: 300 351 003 000

• You may want to save the bootloader to a file so you can reuse it later (same procedure as for the

kill-the-bit example above)

• Activate RESET (to reset program counter to 0, the start of the boot loader)

• Activate RUN. The boot loader is now running. You should see LEDs A0-A4 on, A5-A15 should be off.

• Set all switches to 0, then raise SW15, SW7 and SW6. Tthis selects example 0xC0 (SW7-0=0xC0)

which is the 4k BASIC tape image to be played back to the SIO device (SW15-13=100)

• Activate AUX2 down. The HLDA LED will come on indicating that data replay has started.

• Immediately switch A15 down (otherwise the second stage boot loader will attempt to load from

ACR instead of SIO).

• For the first 17 seconds (while the first-stage boot loader is running) the pattern on the A15-A0 LEDs

should not change.

• After about 17 seconds the second stage (checksum) boot loader should start running.

At that point, LEDs 15-12 should be off, A11-A7, A5, A2, A1, A0 should be on and A6, A4 and A3

should be very faintly flashing (about 10x per second, one flash per byte received).

• The second stage boot loader takes about 6 ½ minutes. Once it is done, the LED pattern should

change to A9-A7 and A3-A0 on, all others off and your termial should show the “MEMORY SIZE?”

prompt.

• After you answer the usual startup questions, BASIC should be up and running.

• To load a BASIC example program, set SW0-7 to the program number (e.g. 00011011 for a simple

prime number computation) and activate AUX2 down.

- 19 -

Altair Time Sharing BASIC

The simulator allows to run Altair Time Sharing BASIC with two users, one on a terminal connected to the

Arduino Due’s main serial port (either use pins 0 and 1 or the USB connection), the other using the Due’s Serial1

port at pins 18 and 19.

To set up the simulator, enter the Configuration Editor and make sure both the Serial and Serial1 baud rates are

set properly for your two terminals. The primary host serial port can be either one, whichever is more

convenient.

Next configure the emulated devices. Time Sharing BASIC only supports 2SIO cards, so set the SIO and ACR cards

to “Not mapped”. Configure the the two ports of the 2SIO card as follows:

• One mapped to primary, the other mapped to the secondary host interface

• Simulated baud rate: 2400 (anything higher can cause problems when trying to play back examples)

• Example playback NULs: 0

• Use 7 bits: on

• Serial input uppercase: on

• Translate backspace to: rubout

Time Sharing BASIC relies on interrupts to give each user their proper time slice and uses the 88-RTC-VI (Real-

Time Clock and Vector Interrupt board) to do so. Therefore, both the Real-Time Clock and Vector Interrupts

must be set up properly in the simulator. Select “Configure Interrupts” sub-menu:

• Enable the Real-Time Clock and set it to 60Hz or 100Hz

• Enable the Vector Interrupt board (Use Vector Interrupt Board)

• Set the Disk drive interrupt to VI0

• Set the Real-Time Clock interrupt to VI1

• Set the 88-2SIO port 1 interrupt to VI2

• Set the 88-2SIO port 2 interrupt to VI2

• Set the 88-SIO and 88-ACR interrupts to “Not Connected”

For convenience, you may want to configure the “Aux1 shortcut program” setting to the Time Sharing

Basic v1.1 disk. After everything is set, you may want to save the configuration so you can later just load it.

Ready to run Time-Sharing BASIC!

First, connect your two terminals to the Serial and Serial1 connection on the Arduino. Make sure the terminal

settings match the host interface baud rates set above (NOT the simulated baud rates).

Next, either press AUX1 UP (if you have configured it) or mount the Time-Sharing BASIC disk and run the disk

boot loader (see the Disk Drive Support section for more information). After a few seconds, the ALTAIR T/S DISK

BASIC V1.1 prompt should appear. Answer the configuration questions as follows:

• RECONFIGURE? N (you may say L and verify that LEVEL1 is set to TIMER and LEVEL2 is set to 2 – 16, 18)

• MEMORY SIZE? [just press ENTER]

• NUMBER OF USERS? 2

• TERMINAL ADDRESS? 16

• REGION SIZE? 20000

• TERMINAL ADDRESS? 18

• REGION SIZE? 20000

• MOUNT PASSWORD? [pick a password and press ENTER]

After the last prompt, a BASIC startup message (ALTAIR T/S DISK BASIC V1.1) should show up on both terminals.

Both terminals can be used independently to interact with BASIC and load and run programs. Refer to the

ALTAIR Time Sharing BASIC manual (can be found online) on how mount disks and load programs.

- 20 -

Music System

The Music System from Processor Technology was an affordable Music System for the Altair that required only a

a minimal hardware addition. To learn more about the Music System and how it ran on the original Altair, head

over to altairclone.com where Mike Douglas has put together a great description.

You can run the music system on the simulator without any changes but in order to get any actual sound you

will need to add just a minimal number of components: two capacitors and one resistor. Here’s the schematic

(taken from page 7 of the Music System documentation):

Connect the INTE input of the above schematic to the Arduino pin that drives the INTE light (pin D12 on the Due,

pin D38 on the Mega) and GND to ground. The output is a line level mono signal that can be connected to the

input of any amplified speaker system. It is not strong enough to drive headphones although but some mini

earphones do produce a (not very loud) sound when plugged in.

The music system consists of two parts:

• The music system itself, which allows to enter, compile and play music (see User’s Guide)

• The ACUTER monitor (a version of the CUTER monitor ported to the Altair and enhanced by Mike

Douglas) which is necessary to load and save music as well as handling input/output (see User’s Guide).

The music system can not run on its own without the monitor.

To run the music system on the simulator, do the following:

• Enter the configuration monitor and set “throttle delay” to 12 (leaving it at automatic delay adds a weird

vibrato effect when playing music)

• Make sure that 2SIO port 1 is mapped to your primary host interface

• Enable the “Serial input uppercase” option for the 2SIO port1

• Use a baud rate of no more than 9600 for your primary host interface (otherwise importing the HEX

data for music examples will not work properly)

• Exit the configuration monitor

• Turn on switches SW0, SW2 and SW3, all others off

• Activate AUX1 down

• You should now see a “>” prompt in your terminal. This is the command prompt of the ACUTER monitor.

• Enter “EX 0” to initialize the music system itself.

• You should see “THE MUSIC SYSTEM (C) 1977 SOFTWARE TECHNOLOGY CORP”

• Enter “RET” to return to ACUTER (should see the “>” prompt)

Now we need to get some music into the system. Mike Douglas has collected a number of music examples for

the system. Follow this link to get them (look in the subdirectories). To get an example into the system, we use

the HGET command that Mike has added to ACUTER:

- 21 -

• Enter “HGET” in ACUTER

• You should see “Send/Rcv on port 0”

• Now click on one of the HEX files of music examples from the web site (e.g. SALLY.HEX) so it opens in

your web browser. It should show many lines looking like

:1008D3003430303130202F41495220574954482079

• Select all (likely CTRL-A) in your browser and copy it to the clipboard (CTRL-C)

• Now paste it into your terminal.

• The terminal should show many lines listing addresses and return to the “>” prompt when done.

• Now enter “EX 0” to go back to the music system (there will be no prompt after entering the system)

• Enter “FILE”, which causes the music system to scan memory for the imported music file

• Next, enter “SCORE”, which compiles the music

• Finally, enter “PLAY” to play the compiled music. You should hear the music in your speakers.

For a detailed description of the ACUTER and music system commands refer to their User manuals: ACUTER

Music System. Here’s an example session (user input in bold italics, system output normal):

>EX 0
THE MUSIC SYSTEM (C) 1977 SOFTWARE TECHNOLOGY CORP. <77-05-19>
08D3 08D3
RET
>HGET
[paste contents of SALLY.HEX into terminal]
08D3
08E3
08F3
[…]
10E3
>EX 0
FILE
08D3 10F0
SCORE
10F1 17D1
PLAY

If desired, a piece of music that was imported via HGET can be saved within the simulator to a virtual tape by

using the capture/replay functionality. To save an example to a file from within ACUTER:

>HGET
[paste contents of SALLY.HEX into terminal]

08D3
08E3
08F3
[…]
10E3
 [SW15, SW13, SW8, SW0 up, all others down => prepare to capture data from ACR to file #1]

[AUX2 up => start captur]
>SAVE SALLY 08D3 10F2
>
[AUX2 up => end capture]

To load an example from a file within ACUTER:

>GET
[SW15, SW13, SW8, SW0 up, all others down => prepare to play back file #1 to ACR]

[AUX2 down => start playback]
SALLY 08D3 0820
>

- 22 -

MITS Programming System II

 [adapted from Mike Douglas’ instructions at altairclone.com]

The MITS Programming System II allows development of 8080 assembly language applications

on the Altair 8800 using just paper tape or cassette for mass storage. The package consists of an

editor, assembler, debugger and a monitor that allows execution of these programs as well as the

programs you may develop.

To use the programming package, the monitor program is loaded from paper tape or cassette in the

same manner as loading BASIC. Once loaded, the monitor is then used to load the editor,

assembler, debugger or user programs.

The monitor loads from paper tape or cassette using the same bootstrap loader as would be used

for BASIC version 3.2. Sense switch settings are the same with the addition of A9 functionality:

A9 up – the monitor does NOT use serial input interrupts

A9 down – the monitor uses serial input interrupts

Loading the Monitor, Editor and Assembler

1) Set A15-A3 down and A2-A0 up.

2) Raise A9 if you want to disable interrupts. If interrupts are enabled, serial replay is slower (because it

must run at the given baud rate). On the other hand, enabling interrupts enables the use of Ctrl-C.

3) Push AUX1 down to load the monitor.

4) The monitor prompt is two spaces and "?"

5) STOP! Do not type any commands to see "what happens." If what is typed is not a command, the

monitor tries loading a program of that name from the cassette and hangs there until you provide that

program. If the ABS device has been set to audio-cassette (AC), then Ctrl-C will return to the monitor

prompt if interrupts were enabled during the boot process. Otherwise, follow the instructions below to

restart the monitor from the front panel.

6) Assign the program load device to the cassette, type: "OPN ABS,AC<cr>"

7) Load the editor, type: "EDT<cr>". When loaded, the editor's prompt "*" is displayed. Type "E<cr>" to

return the monitor.

8) Move the editor's buffer location into high memory so the assembler can reside in memory at the same

time as the editor. For larger programs, more than the default 2K of buffer space will probably be

needed as well. Here are settings for an 8K buffer:

Type "DEP 5124<cr>" and enter "0<cr>" then "100<cr>" then ctrl-z.

This specifies the 16-bit octal address 40000 (0x4000) for buffer start.

Type "DEP 5530<cr>" and enter "0<cr>" then "140<cr>" then ctrl-z.

This specifies the 16-bit octal address 60000 (0x6000) for buffer end.

9) Load the assembler, type: "AM2<cr>". When loaded, the assembler prompt is "*ASM*<cr>". Type

"EOA<cr>" (end of assembly) to return to the monitor.

10) DBG, EDT and ASM share the same memory space (see Memory Allocation section below). If two of

them are loaded sequentially, the system will just start the second one loaded, even if invoking the first.

For example, if EDT is loaded first and then ASM, the monitor will invoke ASM if EDT is typed as a

command. To force reloading of a component, use CLR to remove it from the program table, i.e. in the

situation mentioned before, typing CLR EDT and then EDT will invoke the editor.

The computer is now ready to iteratively edit, assemble and run/test a program.

- 23 -

Using the Editor and Assembler

1. To start the editor, type: “EDT<cr>” This starts the editor and clears the edit buffer. To subsequently re-

edit a program, type “EDT(R)<cr>” This leaves the existing source code in memory. If the “(R)” is left off,

the program source will be erased.

2. At the editor prompt type “I” for insert. Ctrl-Z exits the insert mode. “P” prints (displays) the file with

line numbers. “W” displays the file without line numbers. “D line[,line]” deletes line(s). “R line” replaces

a line. “I line” inserts after the specified line. “I” by itself inserts before the first line. “E” exits the editor

and returns control to the monitor.

3. End programs with:

• BEG start label

• END program name

• EOA

Where “start label” is the program entry point, “program name” is a three character program

name. “EOA” means end of assembly.

4. Assign source file input to come from the edit buffer instead of a device and declare file type of ASCII

(text file): Type, “OPN FIL,EB,A<cr>” This only has to be done once during a session (or if the FIL device

was subsequently assigned to a different device during the session).

5. Run the assembler: Type “AM2<cr>”

6. Tell the assembler to take input from a file: Type “FILE<cr>” The assembler will run and show errors and

undefined symbols. Note: The “Undefined Symbols” heading is displayed even when there are no

undefined symbols. Control is returned to the monitor.

7. Run the program by jumping to the starting address: Type “JMP xxxxxx” where xxxxxx is the program

starting address in octal.

8. You can enter the program into the monitor’s program table as follows: After a successful assembly, re-

enter the assembler and preserve symbols: Type “AM2(P)<cr>”

9. Type “RUN name<cr>” where name is the three character name for the program. The program will run.

From here on, the program can be run by typing the “name” specified at the monitor prompt. This step

does not have to be repeated after subsequent assemblies if the entry address has not changed.

Memory Allocation

• The monitor is about 2.5K in length and uses RAM up through 0x0A3F

• The editor is about 2K in length and resides just above the monitor at 0xA40 – 0x11B1, followed by the

default 2K edit buffer space from 0x11B2 – 0x19B1.

• Two versions of the assembler are available. Each are about 3K in length. ASM (assembler version 1)

loads at the same address as the editor (0xA40). This is inconvenient for the iterative cycle of edit,

assemble and test. As an alternative, AM2 (assembler version 2) loads just above the editor at 0x1350 –

0x1D78. The assembler’s symbol table grows up from 0x1D78. Note that the default location of the edit

buffer conflicts with the load address of AM2 as the edit buffer grows. Before using the editor for longer

programs, the location of the edit buffer should moved to a free area in memory by using the monitor

DEP command to patch the buffer start address into octal locations 5124-5125 and the buffer end

address+1 into octal locations 5530-5531.

• When using the AM2 assembler, a program loaded at 0x2000 leaves about 650 bytes of symbol table

space (0x1D78 – 0x1FFF). This is enough for small demo programs of 100 lines or less. Otherwise, a

higher starting address should be used for the target program

• The debugger is is about 2K in length and overlays the editor at 0xA40 – 0x133F. The debugger and AM2

assembler can both reside in memory at the same time. This makes it easy to patch programs with the

assembler while debugging the program.

- 24 -

Loading and Saving Files

1. Assign the FIL device to the audio cassette and specify ASCII files:

Type “OPN FIL,AC,A<cr>”

2. In the editor, type “L<cr>” to load a source file. Type “S<cr>” to save a source file.

3. After loading a source file into the editor, you can re-assign FIL to the edit buffer for use as the

assembler input: Type “OPN FIL,EB,A<cr>”

4. When you want to save an edited file after the edit and assemble process, be sure to set the

FIL device back to AC before using the “S” command from within the editor.

5. Optionally, you can take assembler source file input from the audio cassette. After assigning

FIL to the AC (see step 2), in the assembler, type “FILE name<cr>” where “name” is the three character

source file name for the assembler to read. The source file is then read directly from the audio cassette

instead of the edit buffer.

Additional Notes

• When using the edit buffer as the source for the assembler, the source file must be “rewound” by

editing the source file in between successive assemblies.

• To restart the monitor, stop the machine, set all switches off except A6 (i.e., set address of octal

100). Raise examine, set front panel switches back the way they were at load time, then depress run.

• When sending large amounts of text (e.g. pasting source code into the serial terminal), some characters

may get lost. Refer the section about pasting text into the terminal in the “Interacting with running

programs” about possible solutions.

Example usage #1: assemble directly from input

1) Make sure simulator is configured to send SIO output and SIO2 port 1 output to your terminal

2) [STOP]+[RESET] reset Altair

3) [A15-A3 down, A2, A1, A0 up] select program #7 (PS2 monitor) using SIO card with interrupts

4) [AUX1 down] load and run PS2 monitor and mount PS2 cassette tape

5) OPN ABS,AC assign ACR to ABS device (to load editor/assembler)

6) AM2 start assembler (to load it into memory)

7) [CLR] un-mount the PS2 tape

8) [A7 up, A2 down, A1 up] select ASM example #2 (“dump” example from PS2 documentation)

9) [AUX2 down] start ASM source code example replay

10) RUN DUMP runs DMP example directly from assembler

Example usage #2: insert into edit buffer, then assemble

1) Make sure simulator is configured to send SIO output and SIO2 port 1 output to your terminal

2) [STOP]+[RESET] reset Altair

3) [A15-A3 down, A2, A1, A0 up] select program #7 (PS2 monitor) using SIO card with interrupts

4) [AUX1 down] load and run PS2 monitor and mount PS2 cassette tape

5) OPN ABS,AC assign ACR to ABS device (to load editor/assembler)

6) EDT start editor (to load it into memory)

7) E end editor

8) AM2 start assembler (to load it into memory)

9) EOA exit assembler

10) DEP 5124 move edit buffer to 0x4000-0x6000 = 8K length

11) 0 start address 100-000 = 40000 octal = 0x4000

12) 100

13) [CTRL-Z] end of input

14) DEP 5530

15) 0 end address 140-000 = 60000 octal = 0x6000

16) 140

- 25 -

17) [CTRL-Z] end of input

18) EDT start editor again (with new buffer)

19) I enter "insert" mode

20) [CLR] un-mount the PS2 tape

21) [A7 up, A2 down, A1 down, A0 up] select ASM example #1 (PONG)

or [A7 up, A2 down, A1 up] select ASM example #2 (DUMP)

22) [AUX2 down] start ASM source code example replay

23) [CTRL-Z] exit "insert" mode after example is loaded

24) E exit editor

25) OPN FIL,EB,A select edit buffer as input device

26) AM2(S) go into assembler (S parameter to print symbol table at end)

27) FILE load input file (from edit buffer)

28) EOA return to monitor

29) JMP 20000 run program

Example usage #3: insert into edit buffer, assemble, write to file, run file

1) Make sure simulator is configured to send SIO output and SIO2 port 1 output to your terminal

2) [STOP]+[RESET] reset Altair

3) [A15-A3 down, A2, A1, A0 up] select program #7 (PS2 monitor) using SIO card with interrupts

4) [AUX1 down] load and run PS2 monitor and mount PS2 cassette tape

5) OPN ABS,AC assign ACR to ABS device (to load editor/assembler)

6) EDT start editor (to load it into memory)

7) E end editor

8) AM2 start assembler (to load it into memory)

9) EOA exit assembler

10) DEP 5124 move edit buffer to 0x4000-0x6000 = 8K length

11) 0 start address 100-000 = 40000 octal = 0x4000

12) 100

13) [CTRL-Z] end of input

14) DEP 5530

15) 0 end address 140-000 = 60000 octal = 0x6000

16) 140

17) [CTRL-Z] end of input

18) EDT start editor again (with new buffer)

19) I enter "insert" mode

20) [CLR] un-mount the PS2 tape from ACR

21) [A7 up, A2 down, A1 down, A0 up] select ASM example #1 (PONG)

22) [AUX2 down] start ASM source code example replay

23) [CTRL-Z] exit "insert" mode after example is loaded

24) E exit editor

25) OPN FIL,EB,A select edit buffer as input device

26) AM2(S,A) go into assembler (S parameter to print symbol table at end,

 A to dump output binary to file)

27) [A15, A13, A8 up, A7 down] Prepare to capture file #1 from ACR device

28) FILE load input file (from edit buffer)

[wait for “SENSE SW 15 FOR DUMP” message]

29) [AUX2 up] start capturing

30) [A15 down, A15 up] tells AM2 to start writing

[wait for “?” prompt from PS2 monitor]

31) [AUX2 up] finish capturing

32) [AUX2 down] start replay

33) PONG load and run PONG

- 26 -

8080 Instruction Set

Conventions in instruction source:
 D = Destination register (8 bit)
 S = Source register (8 bit)
 RP = Register pair (16 bit)
 # = 8 or 16 bit immediate operand
 a = 16 bit Memory address
 p = 8 bit port address
 ccc = Conditional

Conventions in instruction encoding:
 db = Data byte (8 bit)
 lb = Low byte of 16 bit value
 hb = High byte of 16 bit value
 pa = Port address (8 bit)

Dest and Source reg fields:
 111=A (Accumulator)
 000=B
 001=C
 010=D
 011=E
 100=H
 101=L
 110=M (Memory reference through address in H: L)

Register pair 'RP' fields:
 00=BC (B:C as 16 bit register)
 01=DE (D:E as 16 bit register)
 10=HL (H:L as 16 bit register)
 11=SP (Stack pointer, refers to PSW (FLAGS:A) for PUSH/POP)

Condition code 'CCC' fields: (FLAGS: S Z x A x P x C)
 000=NZ (Zero flag not set)
 001=Z (Zero flag set)
 010=NC (Carry flag not set)
 011=C (Carry flag set)
 100=PO (Parity flag not set - ODD)
 101=PE (Parity flag set - EVEN)
 110=P (Sign flag not set - POSITIVE)
 111=M (Sign flag set - MINUS)

- 27 -

Inst Encoding Flags Description
--- -------------------
ACI # 11001110 db ZSCPA Add immediate t o A with carry*
ADC S 10001SSS ZSCPA Add register to A with carry
ADD S 10000SSS ZSPCA Add register to A
ADI # 11000110 db ZSCPA Add immediate t o A
ANA S 10100SSS ZSCPA AND register wi th A
ANI # 11100110 db ZSPCA AND immediate w ith A
CALL a 11001101 lb hb - Unconditional s ubroutine call
Cccc a 11CCC100 lb hb - Conditional sub routine call
CMA 00101111 - Complement A
CMC 00111111 C Complement Carr y flag
CMP S 10111SSS ZSPCA Compare registe r with A
CPI # 11111110 ZSPCA Compare immedia te with A
DAA 00100111 ZSPCA Decimal Adjust accumulator
DAD RP 00RP1001 C Add register pa ir to HL (16 bit add)*
DCR D 00DDD101 ZSPA Decrement regis ter*
DCX RP 00RP1011 - Decrement regis ter pair
DI 11110011 - Disable interru pts
EI 11111011 - Enable interrup ts
HLT 01110110 - Halt processor
IN p 11011011 pa - Read input port into A
INR D 00DDD100 ZSPA Increment regis ter
INX RP 00RP0011 - Increment regis ter pair
Jccc a 11CCC010 lb hb - Conditional jum p*
JMP a 11000011 lb hb - Unconditional j ump*
LDA a 00111010 lb hb - Load A from mem ory
LDAX RP 00RP1010 *1 - Load indirect t hrough BC or DE
LHLD a 00101010 lb hb - Load H:L from m emory*
LXI RP,# 00RP0001 lb hb - Load register p air immediate*
MOV D,S 01DDDSSS - Move register t o register*
MVI D,# 00DDD110 db - Move immediate to register*
NOP 00000000 - No operation
ORA S 10110SSS ZSPCA OR register wit h A
ORI # 11110110 ZSPCA OR immediate wi th A
OUT p 11010011 pa - Write A to outp ut port
PCHL 11101001 - Jump to address in H:L
POP RP 11RP0001 *2 *2 Pop register pa ir from the stack
PUSH RP 11RP0101 *2 - Push register p air on the stack
RAL 00010111 C Rotate A left t hrough carry*
RAR 00011111 C Rotate A right through carry
Rccc 11CCC000 - Conditional ret urn from subroutine
RET 11001001 - Unconditional r eturn from subroutine
RLC 00000111 C Rotate A left
RRC 00001111 C Rotate A right
RST n 11NNN111 - Restart (Call n *8)
SBB S 10011SSS ZSCPA Subtract regist er from A with borrow
SBI # 11011110 db ZSCPA Subtract immedi ate from A with borrow
SHLD a 00100010 lb hb - Store H:L to me mory*
SPHL 11111001 - Set SP to conte nt of H:L
STA a 00110010 lb hb - Store A to memo ry
STAX RP 00RP0010 *1 - Store indirect through BC or DE
STC 00110111 C Set Carry flag
SUB S 10010SSS ZSCPA Subtract regist er from A
SUI # 11010110 db ZSCPA Subtract immedi ate from A
XCHG 11101011 - Exchange DE and HL content
XRA S 10101SSS ZSPCA Exclusive OR re gister with A
XRI # 11101110 db ZSPCA Exclusive OR im mediate with A
XTHL 11100011 - Swap H:L with t op word on stack

*1 = Only RP=00(BC) and 01(DE) are allowed for LDAX /STAX
*2 = RP=11 refers to PSW for PUSH/POP (cannot push/ pop SP).
 When PSW is POP'd, ALL flags are affected.

- 28 -

Encoding Inst Flags Description
--- -------------------
00000000 NOP - No operation
00000111 RLC C Rotate A left
00001111 RRC C Rotate A right
00010111 RAL C Rotate A left t hrough carry*
00011111 RAR C Rotate A right through carry
00100010 lb hb SHLD a - Store H:L to me mory*
00100111 DAA ZSPCA Decimal Adjust accumulator
00101010 lb hb LHLD a - Load H:L from m emory*
00101111 CMA - Complement A
00110010 lb hb STA a - Store A to memo ry
00110111 STC C Set Carry flag
00111010 lb hb LDA a - Load A from mem ory
00111111 CMC C Complement Carr y flag
00DDD100 INR D ZSPA Increment regis ter
00DDD101 DCR D ZSPA Decrement regis ter*
00DDD110 db MVI D,# - Move immediate to register*
00RP0001 lb hb LXI RP,# - Load register p air immediate*
00RP0010 *1 STAX RP - Store indirect through BC or DE
00RP0011 INX RP - Increment regis ter pair
00RP1001 DAD RP C Add register pa ir to HL (16 bit add)*
00RP1010 *1 LDAX RP - Load indirect t hrough BC or DE
00RP1011 DCX RP - Decrement regis ter pair
01110110 HLT - Halt processor
01DDDSSS MOV D,S - Move register t o register*
10000SSS ADD S ZSPCA Add register to A
10001SSS ADC S ZSCPA Add register to A with carry
10010SSS SUB S ZSCPA Subtract regist er from A
10011SSS SBB S ZSCPA Subtract regist er from A with borrow
10100SSS ANA S ZSCPA AND register wi th A
10101SSS XRA S ZSPCA Exclusive OR re gister with A
10110SSS ORA S ZSPCA OR register wit h A
10111SSS CMP S ZSPCA Compare registe r with A
11000011 lb hb JMP a - Unconditional j ump*
11000110 db ADI # ZSCPA Add immediate t o A
11001001 RET - Unconditional r eturn from subroutine
11001101 lb hb CALL a - Unconditional s ubroutine call
11001110 db ACI # ZSCPA Add immediate t o A with carry*
11010011 pa OUT p - Write A to outp ut port
11010110 db SUI # ZSCPA Subtract immedi ate from A
11011011 pa IN p - Read input port into A
11011110 db SBI # ZSCPA Subtract immedi ate from A with borrow
11100011 XTHL - Swap H:L with t op word on stack
11100110 db ANI # ZSPCA AND immediate w ith A
11101001 PCHL - Jump to address in H:L
11101011 XCHG - Exchange DE and HL content
11101110 db XRI # ZSPCA Exclusive OR im mediate with A
11110011 DI - Disable interru pts
11110110 ORI # ZSPCA OR immediate wi th A
11111001 SPHL - Set SP to conte nt of H:L
11111011 EI - Enable interrup ts
11111110 CPI # ZSPCA Compare immedia te with A
11CCC000 Rccc - Conditional ret urn from subroutine
11CCC010 lb hb Jccc a - Conditional jum p*
11CCC100 lb hb Cccc a - Conditional sub routine call
11NNN111 RST n - Restart (Call n *8)
11RP0001 *2 POP RP *2 Pop register pa ir from the stack
11RP0101 *2 PUSH RP - Push register p air on the stack

*1 = Only RP=00(BC) and 01(DE) are allowed for LDAX /STAX
*2 = RP=11 refers to PSW for PUSH/POP (cannot push/ pop SP).
 When PSW is POP'd, ALL flags are affected.

- 29 -

Hardware setup for Arduino Mega 2560

What makes the Arduino Mega 2560 perfect for this project is that it has exactly the right number of

I/O pins to connect all the Altair’s input/output elements:

Altair: 12 Status LEDs (INT,WO,STACK,HLTA,OUT,M1,INP,MEMR,PROT,INTE,WAIT,HLDA)

 8 Data bus LEDs (D0-D7)

 16 Address bus LEDs (A0-A15)

 16 Input switches (SW0-15)

 16 Function switches (RUN,STOP,EXAMINE,EXAMINE NEXT,DEPOSIT,DEPOSIT

 NEXT,RESET,CLR,PROTECT,UNPROTECT,AUX1 UP/DOWN,AUX2 UP/DOWN)

2 Connections for serial RX/TX

70 (digital) inputs/outputs required

Arduino Mega 2560: 54 Digital I/O pins

 16 Analog input pins (can be used for digital input)

70 I/O lines available

For simplicity, we connect the Altair’s 16 input switches (SW0-15) to the Arduino’s 16 analog inputs.

These are SPDT On-On switches that alternate between two settings:

For the function switches we use the Arduino’s internal pull-up resistors and just switch GND to the

appropriate digital input. These are momentary SPDT (On)-Off-(On) switches. For example, the

EXAMINE/EXAMINE NEXT switch is connected like this:

To drive the output LEDs we just use a simple transistor switch circuit for each LED (to prevent

overload on the Arduino if too many of the LEDs are on at the same time):

See the following page for a mapping of exactly which front panel element maps to which Arduino I/O

pin.

- 30 -

Pin Mapping for Arduino Mega 2560

Mapping Arduino pin to Altair element

Arduino

Pin

Altair

Element

Direction Arduino

Pin

Altair

Element

Direction

D0 Serial RX in D35 A10 out

D1 Serial TX out D36 A9 out

D2 AUX2 UP in D37 A8 out

D3 AUX2 DOWN in D38 INTE out

D4 STEP in D39 PROT out

D5 SLOW in D40 WAIT out

D6 EXAMINE in D41 HLDA out

D7 EXAMINE NEXT in D42 D7 out

D8 DEPOSIT in D43 D6 out

D9 DEPOSIT NEXT in D44 D5 out

D10 OUT out D45 D4 out

D11 M1 out D46 D3 out

D12 INP out D47 D2 out

D13 MEMR out D48 D1 out

D14 AUX1 UP in D49 D0 out

D15 AUX1 DOWN in D50 HLTA out

D16 PROTECT in D51 STACK out

D17 UNPROTECT in D52 WO out

D18 RESET in D53 INT out

D19 CLR in A0 SW0 in

D20 RUN in A1 SW1 in

D21 STOP in A2 SW2 in

D22 A0 out A3 SW3 in

D23 A1 out A4 SW4 in

D24 A2 out A5 SW5 in

D25 A3 out A6 SW6 in

D26 A4 out A7 SW7 In

D27 A5 out A8 SW8 In

D28 A6 out A9 SW9 In

D29 A7 out A10 SW10 In

D30 A15 out A11 SW11 In

D31 A14 out A12 SW12 In

D32 A13 out A13 SW13 In

D33 A12 out A14 SW14 In

D34 A11 out A15 SW15 In

- 31 -

Mapping Altair element to Arduino pin

Altair

Element

Arduino

Pin

Direction Altair

Element

Arduino

Pin

Direction

SW0 A0 in A0 D22 out

SW1 A1 in A1 D23 out

SW2 A2 in A2 D24 out

SW3 A3 in A3 D25 out

SW4 A4 in A4 D26 out

SW5 A5 in A5 D27 out

SW6 A6 in A6 D28 out

SW7 A7 In A7 D29 out

SW8 A8 in A8 D37 out

SW9 A9 in A9 D36 out

SW10 A10 in A10 D35 out

SW11 A11 in A11 D34 out

SW12 A12 in A12 D33 out

SW13 A13 in A13 D32 out

SW14 A14 in A14 D31 out

SW15 A15 in A15 D30 out

STOP D21 in D0 D49 out

RUN D20 in D1 D48 out

SINGLE STEP D4 in D2 D47 out

SLOW D5 in D3 D46 out

EXAMINE D6 in D4 D45 out

EXAMINE NEXT D7 in D5 D44 out

DEPOSIT D8 in D6 D43 out

DEPOSIT NEXT D9 in D7 D42 out

RESET D18 in INT D53 out

CLR D19 in WO D52 out

PROTECT D16 in STACK D51 out

UNPROTECT D17 in HLTA D50 out

AUX1 UP D14 in OUT D10 out

AUX1 DOWN D15 in M1 D11 out

AUX2 UP D2 in INP D12 out

AUX2 DOWN D3 in MEMR D13 out

Serial RX D0 in PROT D39 out

Serial TX D1 out INTE D38 out

 WAIT D40 out

 HLDA D41 out

- 32 -

Hardware setup for Arduino Due

The setup for the Arduino Due is similar to the Arduino Mega (see above), just the pins are different

(because the simulator accesses some of the pins directly by their processor register to increase

efficiency). See the next page for the Arduino Due connections.

• LED drivers: Same as for the Arduino Mega. Note that the LED driver still uses +5V even though

the Due runs at 3.3V (because the voltage is only used for lighting the LEDs).

• Function switches: Same as for the Arduino Mega (only different pins)

• Address switches: On the Due we can access the analog input pins just like digital inputs,

including the ability to switch on an internal pullup resistor. That slightly simplifies the setup for

the SW0-SW15 switches as we do not have to connect Vcc to the switches, only GND:

• The reset circuit on (some) Due boards is not very reliable at power-up (this seems to be a

common problem), leaving the Due sometimes in a blocked state after power-up. If you

experience this, a simple workaround is to add a capacitor and resistor to keep the RESET line

low for a bit longer at power-up. This has worked fine for me and not caused any side effects.

• In the mapping on the next pages you will see some Arduino pins shown with two labels, for

example A0 (D54). In this case, A0 is the label on the board and D54 is the digital pin number that

relates to that connection (i.e. Analog input 0 (A0) can be accessed as Digital input 54 (D54))

- 33 -

Pin Mapping for Arduino Due

Mapping Arduino pin to Altair element

Arduino

Pin

Altair

Element

Direction Arduino Pin Altair

Element

Direction

D0 Unused D36 A2 out

D1 Unused D37 A3 out

D2 INT out D38 A4 out

D3 WO out D39 A5 out

D4 STACK out D40 A6 out

D5 HLTA out D41 A7 out

D6 OUT out D42 SW14 in

D7 M1 out D43 SW15 in

D8 INP out D44 A15 out

D9 MEMR out D45 A14 out

D10 WAIT out D46 A13 out

D11 D7 out D47 A12 out

D12 INTE out D48 A11 out

D13 PROT out D49 A10 out

D14 D4 out D50 A9 out

D15 D5 out D51 A8 out

D16 SW9 in D52 RESET in

D17 SW8 in D53 CLR in

D18 Serial TX out A0 (D54) STEP in

D19 Serial RX in A1 (D55) SLOW in

D20 RUN in A2 (D56) EXAMINE in

D21 STOP in A3 (D57) EXAMINE NEXT in

D22 HLDA out A4 (D58) DEPOSIT in

D23 SW10 in A5 (D59) DEPOSIT NEXT in

D24 SW11 in A6 (D60) PROTECT in

D25 D0 out A7 (D61) UNPROTECT in

D26 D1 out A8 (D62) SW0 in

D27 D2 out A9 (D63) SW1 in

D28 D3 out A10 (D64) SW2 in

D29 D6 out A11 (D65) SW3 in

D30 AUX1 UP in DAC0 (D66) SW4 in

D31 AUX1 DOWN in DAC1 (D67) SW5 in

D32 AUX2 UP in CANRX (D68) SW6 in

D33 AUX2 DOWN in CANTX (D69) SW7 in

D34 A0 out SDA1 (D70) SW12 in

D35 A1 out SCL1 (D71) SW13 in

- 34 -

Mapping Altair element to Arduino pin

Altair

Element

Arduino

Pin

Direction Altair

Element

Arduino

Pin

Direction

SW0 A8 (D62) in A0 D34 out

SW1 A9 (D63) in A1 D35 out

SW2 A10 (D64) in A2 D36 out

SW3 A11 (D65) in A3 D37 out

SW4 DAC0 (D66) in A4 D38 out

SW5 DAC1 (D67) in A5 D39 out

SW6 CANRX (D68) in A6 D40 out

SW7 CANTX (D69) In A7 D41 out

SW8 D17 in A8 D51 out

SW9 D16 in A9 D50 out

SW10 D23 in A10 D49 out

SW11 D24 in A11 D48 out

SW12 SDA1 (D70) in A12 D47 out

SW13 SCL1 (D71) in A13 D46 out

SW14 D42 in A14 D45 out

SW15 D43 in A15 D44 out

STOP D21 in D0 D25 out

RUN D20 in D1 D26 out

SINGLE STEP A0 (D54) in D2 D27 out

SLOW A1 (D55) in D3 D28 out

EXAMINE A2 (D56) in D4 D14 out

EXAMINE NEXT A3 (D57) in D5 D15 out

DEPOSIT A4 (D58) in D6 D29 out

DEPOSIT NEXT A5 (D59) in D7 D11 out

RESET D52 in INT D2 out

CLR D53 in WO D3 out

PROTECT A6 (D60) in STACK D4 out

UNPROTECT A7 (D61) in HLTA D5 out

AUX1 UP D30 in OUT D6 out

AUX1 DOWN D31 in M1 D7 out

AUX2 UP D32 in INP D8 out

AUX2 DOWN D33 in MEMR D9 out

Serial RX D19 in PROT D13 out

Serial TX D18 out INTE D12 out

 WAIT D10 out

 HLDA D22 out

- 35 -

Wiring an SD card to the Arduino Due

Standard Arduino SD card shields will not work with the Arduino Due because the SPI pins are not

connected to the D13-D11 pins as in other Arduino board. That is a good thing because we’re already

using the D13-D11 pins for front panel elements.

On the DUE, the SPI pins are only available on the separate 2-row, 6-pin SPI header (labeled “SPI” on

the board).

There are commercial products such as the SparkFun Level Shifting microSD Breakout board that provide an SD

card slot. That board is certainly works but is overkill since the Arduino DUE (like the SD cards) operates on 3.3V

so no level shifting is required.

In fact, an SD card can be wired directly (without any other required electronic elements) to the SPI header on

the Due:

Unfortunately, there is no 3.3V pin on the SPI header on the Arduino Due so that wire must go to the (separate)

3.3V pin. Do not wire the 5V output from the SPI header to the card. Doing so could damage the SD card and/or

the Due.

The CS (chip select) pin is wired directly to GND, so the SD card is always selected. That saves us from having to

find another I/O pin on the Arduino to use for chip select. The SD library on the Arduino requires to specify a

Chip Select output pin but the simulator software sets that to the HLDA light output pin which as a side effect

gives a “sd card active” visual indicator.

I recommend getting a microSD card with a microSD-to-SD adapter. Take the microSD card out of the adapter

and create a cable by soldering wires directly to the adapter’s pins and connecting them to the SPI header using

the wiring given above. The adapter now serves as the socket for the microSD card, which can be plugged in and

taken out easily.

